HKDSE Essentials: Physics Exam Exercises **Electricity and Magnetism**

Updated on 3 Jan, 2013.

Amendments (main book):

E4 p.58 #18	a current	READS	a current of 10 A
E4 p.62 ans #5a	Y, X	READS	<i>Y</i> , <i>Y</i>
E4 p.62 ans #7c	3.46 N	READS	0.346 N
E4 p.64 ans #1d	farther	READS	Α
E4 p.65 #3d	The value in (b)	READS	the value in (c).
E4 p.65 ans #3a	+ve	READS	no
E4 p.65 ans #5d	$8.47 \times 10^5 \mathrm{m\ s^{-1}}$	READS	$8.74 \times 10^5 \mathrm{m\ s^{-1}}$

E5

E6

E6 p.91 #12	The line should read: (Delete the sidenote.	$\langle P \rangle = \langle I^2 R \rangle = \langle I^2 \rangle R = I_{\rm r}$	$_{\rm ms}^2 R = V_{\rm rms}^2 / R = V_{\rm rms} I_{\rm rms}$
E6 p.94 #6(3)	4 times	READS	1/4 times
E6 p.95 ans #12	C	READS	Α
E6 p.97 ans #25	C	READS	В
E6 p.99 #3	90%	READS	95%
E6 p.100 #6b	peak value	READS	r.m.s. value
E6 p.102 ans #5b	$V_0^2/\sqrt{2}$	READS	$V_0/\sqrt{2}$
E6 p.103 #4	6 V battery	READS	8 V battery
E6 p.104 #6	3 V / 5	READS	3 V / 8
E6 p.104 #9	r.m.s.	READS	peak

E7

E7 p.108 #4 Assume that the –ve terminal of the cell is earthed.
E7 p.109 #8(3) at a constant rate READS inversely proportional to time
E7 p.112 #5 Fig.

E8

E8 p.122 #3	'220 V, 2000 W'	READS	'220 V, 2200 W'
E8 p.122 ans #4a	grav. force	READS	elec. force
E8 p.123 #5	diameter 50 cm	READS	radius 50 cm

Appendix

A p.133 ans (Ex1)	3a. (4π $ε_0$) Fr^2/Q_2	3b. $\sqrt{Q_1 Q_2 / (4\pi\epsilon_0 F)}$	
A p.133 ans (Ex2)#3	0.09 Ω	READS	0.09 A
A p.137 ans (Ex1)#2	1.2 Ω	READS	1Ω
A p.141 ans (Ex4)#6	+ <i>y</i>	READS	-у
A p.143 ans (Ex4)#5	same	READS	1:2

Amendments (solution guide):

E4

E4 p.23 #7c $F_B = (0.4)(10)$ (0.1) sin 60° \approx 0.346 N E4 p.24 #12c The note in #10b should be moved here. E4 p.26 #9 last line The force on Y is larger than that on X.

E5

E5 p.29 #10 The 3rd note in #15 should be moved here.

E5 p.29 #17 last line So, (1) and (3) are also correct.

E5 p.32 #4a B should read B_x .

E5 p.33 #9b Delete the values on the vertical axis. E5 p.36 #9 last line Change the subscripts as follows.

 $I_2: I_3 = R_3: R_2 \text{ and } I_1 = I_3 + I_2 = (1 + R_2/R_3) I_2 > I_2.$

E5 p.38 #13a F_B should point to the right horizontally.

R is always \perp the direction of motion of the rod.

W's and F_B 's components \parallel to the tracks do work on the rod.

E6

E6 p.40 #12 The answer should be A. E6 p.41 #25 The answer should be B.

E6 p.45 #4 Change the voltage V_Y to 6 V and get V = 8 V and $P_Y = 2.4$ W.

E6 p.45 #6 last line The voltage of the power supply should be $V = V_A + V_P = (2/3)V_B + 2V_B$.

Solving, we get $V_B = (3/8)V$.

E6 p.45 #9 last para. As half of the curve is chopped, the mean of the V^2 is halved.

E7

E7 p.46 #11 last line $I_0{}^2R = (2\sqrt{3} \times 10^{-3})^2 \times 10 = 0.12 \text{ mW}.$

E8

E8 p.52 #4a(i) 9.11e -31 should read 9.11 \times 10⁻³¹.

Dessert

Dessert p.54 #3 line 1 Grav. field lines terminate at a mass, not originate from it (: masses always

attract each other).

Notes (solution guide):

E5

E5 p.29 #15(2) Alternative:

(2) is correct, as the induced *I* flows from *X* to *W* and from *Z* to *Y*, by Fleming's LH rule, *YZ* experiences a magn. force to the right.

E5 p.37 #10 Alternative:

The induced e.m.f. in a square loop $\xi = kA = kL^2$. The total resistance of a square loop R = k'L.

Thus, the induced current in a square loop $I = \xi/R = k''L$. By this, we may guess that $I_1 > I_2$ and I' flows upwards.

E6

E6 p.39 #6(2) Alternative:

(2) is incorrect since

	<i>V</i> ₁	$N_1 : N_2$	V_2	I ₂	I_1
Р	12 V	2:1	6 V	6/R	3/R
Q	12 V	4:2	3 V	3/R	3/(4R)

E6 p. 39 #7(1) Alternative:

(1) is *incorrect* as copper is not a magnetic material.

E6 p.41 #25 (3) Alternative:

(3) is *incorrect* since the current passes thro' the heating element.

E6 p.41 #29 Alternative:

Note that the metal case must be connected to the live wire, and not earthed.

So, S_3 and S_2 must be closed, and S_1 must be opened.

E6 p.44 #4b Fig. Alternative:

The upper bulb could also be connected directly across the lower bulb

without an extra switch.

E6 p.45 #9 Alternative:

 $P_{\text{half}} = 0.5 P_{\text{full}} = 0.5 (V_0 / \sqrt{2})^2 / R = 0.09 \text{ W}.$